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Abstract

Objective—Functional connectivity (FC) among language regions is decreased in adults with 

epilepsy compared to controls, but less is known about FC in children with epilepsy. We sought to 

determine if language FC is reduced in pediatric epilepsy, and examined clinical factors that 

associate with language FC in this population.

Methods—We assessed FC during an age-adjusted language task in children with left-

hemisphere focal epilepsy (n=19) compared to controls (n=19). Time series data were extracted 

for three left ROIs and their right homologues: inferior frontal gyrus (IFG), middle frontal gyrus 

(MFG), and Wernicke's area (WA) using SPM8. Associations between FC and factors such as 

cognitive performance, language dominance, and epilepsy duration were assessed.

Results—Children with epilepsy showed decreased interhemispheric connectivity compared to 

controls, particularly between core left language regions (IFG, WA) and their right hemisphere 

homologues, as well as decreased intrahemispheric right frontal FC. Increased intrahemispheric 

FC between left IFG and left WA was a positive predictor of language skills overall, and naming 

ability in particular. FC of language areas was not affected by language dominance, as the effects 

remained when only examining study participants with left language dominance. Overall FC did 

not differ according to duration of epilepsy or age of onset.

Significance—FC during a language task is reduced in children, similar to findings in adults. In 

specific, children with left focal epilepsy demonstrated decreased interhemispheric FC in temporal 

and frontal language connections and decreased intrahemispheric right frontal FC. These 
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differences were present near the onset of epilepsy. Greater FC between left language centers is 

related to better language ability. Our results highlight that connectivity of language areas has a 

developmental pattern and is related to cognitive ability.
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Cognition requires coordinated processing between distributed brain regions, which can be 

quantified through functional connectivity (FC).1 FC is the correlation of signal changes 

between brain regions across time during resting state or active task scans. Adults with 

epilepsy demonstrate reduced FC within the language network despite equivalent 

hemodynamic response patterns during fMRI language tasks.2–4 Decreased FC in adults is 

also associated with worse language performance,2,5 indicating a relationship between 

cognitive ability and connectivity. Less is known about FC of language areas in pediatric 

epilepsy populations. Numerous pediatric epilepsy studies of FC have been conducted 

during resting state6,7 but only one study has focused on FC during a cognitive task.8 In a 

study of working memory, children with frontal lobe epilepsy demonstrated decreases in 

connectivity compared to controls, and decreased FC within the frontal lobe of patients was 

associated with cognitive impairment.8 FC during language tasks, however, has not been 

investigated in children with focal epilepsy, despite the presence of language difficulties in 

this age group.9

We address a gap in the understanding of language FC in pediatric focal epilepsy by 

determining if 1) language FC is reduced in children with epilepsy, 2) FC is associated with 

cognitive skills, and 3) FC is associated with clinical factors, such as language dominance, 

age of onset, duration of epilepsy, seizure frequency, and number of anti-epileptic 

medications (AEDs). Based on adult studies, we predicted that children with epilepsy would 

show reduced FC overall compared to controls. We also hypothesized that increased 

language FC would correlate with better neuropsychological performance, particularly 

language. Atypical language patterns are known to occur in epilepsy10 and reduced FC may 

be influenced by atypical language dominance. One adult study controlled for language 

dominance by including only controls and patients with left language dominance and did not 

find reduced left hemisphere functional connectivity in individuals with epilepsy.11 Thus, 

we hypothesized that group differences in FC would diminish when examining only left-

language dominant individuals because FC differences may be biased by epilepsy patients 

with atypical language dominance. Finally, we hypothesized that patients with indicators of 

more severe epilepsy (i.e., longer duration, earlier age of onset, higher seizure frequency, 

more AEDs), would have lower FC.12,13

Methods

Participants

Thirty-eight native English-speaking right-handed children between the ages of six and 12 

participated in this study. Nineteen were patients with left-hemisphere focal epilepsy (13 

male, 6 female; M age=10.24 years, SD=2.05 years) and 19 were typically developing (TD) 
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controls (10 male and 9 female; M age=10.09 years, SD=1.73 years). Another 33 patients 

were excluded due to 1) epileptogenic focus other than the left hemisphere, 2) left-

handedness, 3) questionable task accuracy, 4) technical problem with raw imaging data, 

and/or 5) movement. Regarding movement, we excluded subjects with mean or max x, y, or 

z motion exceeding >3 mm (see below for further detail). Following epilepsy imaging 

guidelines,14 1.5T structural MRI high resolution epilepsy protocol was normal in 18 

patients; one patient had mesial temporal sclerosis (MTS). All patients had a left 

hemispheric seizure focus based on interictal or ictal EEG, and clinical characteristics (see 

Table 1). Precise seizure focus localization was determined for 15 of 19 patients using ictal 

EEG (n=6), interictal EEG (n=8), and clinical seizure characteristics alone (n=1). Four 

additional patients had seizures lateralized to the left hemisphere, with undetermined 

location of seizure focus (interictal EEG: n=2; clinical seizure characteristics alone: n=2). 

Seizure frequency varied from no seizures in the past year to daily seizures. The patients 

were on various AEDs, with seven patients on more than one medication. TD controls were 

drawn from a larger sample15 and selected to match the epilepsy sample based on age (±11 

months). When several TD controls had similar ages to a patient, intellectual functioning 

was then used to match the subjects. TD controls with atypical language patterns were 

excluded from the analyses. All TD controls had normal neurologic examinations and 

normal structural T1 3T MRI. Handedness was measured by child-friendly items from the 

Edinburgh Handedness Inventory (EHI).16

Controls had no history of developmental, learning, neurological, or psychiatric disorders 

and IQ>70. Epilepsy patients also had IQ>70 and no significant developmental, psychiatric, 

or additional neurological history (beyond epilepsy) with the exception of learning disorders 

or attention disorders (e.g., ADHD). Three patients were diagnosed with ADHD and one 

was diagnosed with a learning disorder and ADHD. Five additional patients had learning 

difficulties without a formal diagnosis, as indicated by special education services or grade 

retention. All participants were recruited from the community through flyers, a widely 

distributed hospital newsletter, and a pre-recorded “on-hold” message for the hospital.

The study was approved by Children's National Medical Center Institutional Review Board, 

with informed consent provided by the parents, and assent was provided by all children prior 

to any study procedure.

Neuropsychological testing and Task Performance

Neuropsychological evaluation of intellectual and language functioning was performed in a 

separate session. Data were unavailable for one patient (see Table 1). Intellectual 

functioning was assessed by the Wechsler Abbreviated Scale of Intelligence (WASI).17 

Language functioning was assessed with the Clinical Evaluation of Language Fundamentals, 

Fourth Edition (CELF-IV)18 and the Expressive One-Word Picture Vocabulary Test 

(EOWPVT).19 Dependent variables included the CELF-IV Core Language (CL) score, 

which measures expressive and receptive language, and the EOWPVT total score, which 

measures naming vocabulary. Task performance was evaluated by the overall accuracy for 

the task (true positives divided by the sum of the number of correct answers possible and the 

number of commissions, multiplied by 100).
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MRI

Details of acquisition methods and experimental paradigm were previously described,15 but 

are summarized here. Whole-brain functional MRI was collected on a 3.0 Tesla Siemens 

Magnetom Trio equipped with a standard CP head coil. Images were collected parallel to the 

anterior commissure–posterior commissure plane.20 We used a block design composed of 

five epoch cycles; each cycle consisted of an experimental condition that alternated with a 

control condition and each hemicycle lasted 30 seconds. Total scan time was five minutes. 

Individual stimuli were presented every three seconds for a total of 10 per block. Tasks were 

presented via E-prime software version 1.1 (Psychology Software Tools, Inc., Pittsburgh, 

PA). Visual stimuli were presented through a rear projection screen; auditory stimuli were 

digitized and presented via pneumatic earphones. Responses were performed via fiber-optic 

push button response recorded by PC in E-prime.

Experimental Paradigm

Auditory description decision task—For the experimental condition, the participant 

hears an auditory clue (5-6 word sentences) that describes and names an object (e.g., “A 

long yellow fruit is a banana”) and pushes a button when the correct object is described. 

Seventy percent of items are correct targets and 30% are foils. The task is designed to 

provide in-scanner monitoring of performance by requiring a semantic decision identified by 

button press response. Task performance was assessed by accuracy data (i.e., number of 

correct button responses). The control condition consists of reverse speech with tone 

identification where the participant pushes a button when the tone follows reverse speech 

(70% have tones, 30% are foils). The task was adjusted by age-level with different versions 

of the tasks developed based on word frequency normative data derived from children's 

reading materials21. The auditory description decision task is known to activate frontal and 

temporal language areas.15

Image Preprocessing and FC Preprocessing

Preprocessing and group analyses were performed in SPM8 (Wellcome Department of 

Cognitive Neurology, London, UK) using MATLAB (Version 8.1 Mathworks, Inc., 

Sherborn, MA). Each subject's anatomical scan was coregistered to the SPM8 white matter 

template and then segmented. The mean EPI image was then coregistered to the segmented 

gray matter and the transformation was applied to all of the EPI images. Functional images 

were spatially normalized to the MNI standard anatomical space, spatially smoothed using 

an 8mm full width at half maximum Gaussian kernel, and temporally filtered (high-pass 

filter: 128s). For the group analyses, individual t-maps were generated with movement 

parameters as covariates of no interest.

Given the potential sensitivity of FC analyses to motion,22 participants were excluded for 

excessive movement resulting in >3 mm for both mean or max movement (Controls: mean 

x=0.038 ± 0.34, mean y=0.068 ± 0.057, mean z=0.12 ± 0.043, max x=0.19 ± 0.21, max 

y=0.30 ± 0.18, max z=0.68 ± 0.59; Patients: mean x=0.047 ± 0.040, mean y= 0.083 ± 0.085, 

mean z=0.17 ± 0.14, max x=0.34 ± 0.69, max y=0.32 ± 0.23, max z=0.92 ± 0.67). 

Movement parameters were not different between groups (epilepsy vs. TD controls) 

(p's>0.05). The three left regions of interest (ROIs) were defined by significant clusters of 
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functional activation from whole brain activation (thresholded at FWE, p=0.05) for a larger 

group map of pediatric TD controls within the anatomical boundaries of Wernicke's Area 

(WA), inferior frontal gyrus (IFG; Broca's area), and middle frontal gyrus (MFG), similar to 

masks used in a previous study.15 We entered the center coordinates for each of the three 

left ROIs into an fMRI database (http://beta.neurosynth.org) to confirm that >18 studies of 

language also found activation within approximately six mm of our center coordinates for 

each ROI. This demonstrated that our ROIs were not unduly influenced by our sample and 

confirmed that these are common areas for language activation. Right homologues were 

defined as mirror images of left ROIs. Thus, six ROIs were used. Activation time series data 

were extracted for each subject from each ROI with MarsBar.23 Individual linear correlation 

coefficients were computed between pairs of time course signals extracted from the ROIs, 

partialling out the following parameters to control for motion and physiological noise: 

framewise displacement (FD), regressor of volume index that exceeds 0.5mm FD,24 and 

signal from ventricle and white matter regions of interest.

Determination of Language Dominance

To determine language dominance, we calculated a lateralization index (LI) for each 

subject's IFG and WA ROIs and categorized language based on a commonly-used cut-off 

value of 0.20.25 Using the LI Toolbox bootstrap method (LI-Toolbox for SPM8),26 ROIs 

were individually categorized as left-lateralized if LI ≥ 0.20, bilateral if LI <|0.20|, or right if 

LI ≤ -0.20.20 The participants categorized as left language dominant were considered to 

have typical language dominance, and those with right, bilateral, or crossed patterns were 

considered to be atypical (see Table 2). Crossed dominance patterns occurred when 

participants had discrepant LIs between the two ROIs (e.g., left IFG, right WA), but 

participants with bilateral activation in one region and unilateral activation in the other were 

considered dominant on the side of unilateral region activation.15

Data analyses

The primary analysis examined FC differences between patients and controls (across inter- 

and intrahemispheric connections of IFG, MFG and WA; see Figure 1a for all paired ROI 

combinations). Time course correlation coefficients were transformed to Fisher's z-scores 

and submitted into a mixed model ANOVA with group (TD controls vs. epilepsy) as a 

between-group factor and connection as a within-subject factor (inter- and intrahemispheric 

connections of IFG, MFG and WA). To ensure that connectivity results were not a matter of 

activation differences, we also compared activation between the two groups (TD controls vs. 

epilepsy) at a threshold of p=0.05, FWE.

We performed additional analyses to examine the effects of neuropsychological 

performance, epilepsy characteristics (age of onset, epilepsy duration, seizure frequency, 

number of AEDs), and language dominance on language connectivity. Group differences 

(epilepsy and TD controls) in neuropsychological performance were assessed by one-way 

ANOVA. To examine the relationship between language FC and neuropsychological 

performance, hierarchical multiple linear regression models were used to predict naming 

vocabulary (EOWPVT scores) and overall language ability (CELF-IV-CL scores) from FC 

for IFG and WA connections. Regarding predictor variables, for both models the main 
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intrahemispheric language connection (left IFG and left WA) implicated in adult FC studies 

was entered into the model first, followed by the two interhemispheric connections (left and 

right IFG, left and right WA).

The relationship between 1) seizure duration and 2) age of onset and FC for ROI pairs was 

examined using Pearson r correlation. Regarding seizure frequency, we divided the pediatric 

epilepsy group into a group with more frequent seizures (total: n=7 (daily: n=5, weekly: 

n=2)) and those with fewer seizures (total: n=11(monthly: n=5; none in past six months: 

n=2; none in past year: n=4)). For AEDs, we divided the epilepsy group into a group taking 

one AED or less (n=11) and those taking more than one AED (n=7). For the seizure 

frequency and AED analyses, we used a mixed model ANOVA with group (more vs. less 

frequent or 0-1 AED vs. >1 AED) as a between-group factor and connection as a within-

subject factor (inter- and intrahemispheric connections of IFG, MFG and WA). We 

examined a cumulative total of four tests of clinical variables (age of onset, seizure duration, 

seizure frequency, and number of AEDs); therefore, all p-values were adjusted for multiple 

comparisons using the Bonferroni procedure (p=0.013 for these analyses).

To investigate the effect of language dominance, we ran the mixed model ANOVA with 

group (TD controls vs. epilepsy) as a between-group factor and connection as a within-

subject factor for only the left dominant language participants.

Results

FMRI Activation during the Language Task

The activation maps during the auditory description decision task revealed activation of a 

fronto-temporal network (p=0.05, FWE; k>20 voxels). We did not find any significant 

differences between patients and controls used in this study. Task performance (overall 

accuracy) was not different between groups (see Table 1).

Functional Connectivity: Group Differences in Paired ROI Time Course Correlations

A main effect of group (F(1,36)=6.80, p=0.01, Cohen's d=0.47) demonstrated that FC was 

stronger in TD controls than in patients (Figure 1A). A main effect of ROI (F(8,36)=10.31, 

p<0.001) demonstrated that FC strength differed between language regions, with the 

strongest connection between left and right WA (See Figure 1). There was no two-way 

(group × connection) interaction, suggesting that both groups show a similar FC profile 

among core language regions. Exploratory analyses revealed that patients had lower 

interhemispheric connections of core homologous temporal, inferior frontal, and middle 

frontal language regions compared to controls: left and right WA (p=0.02), left and right 

IFG (p=0.04), and left and right MFG (p=0.02) (Figure 1B and 2). Patients also had a lower 

left and right intrahemispheric connection than controls for IFG and MFG (left IFG and 

MFG: p=0.04; right IFG and MFG: p=0.03).

Relationship Between FC and Neuropsychological Performance

The mean score for all neuropsychological measures was within the average to high average 

range for all participants (see Table 1). Intellectual functioning (FSIQ, VIQ, PIQ) and 
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language skills (CELF-IV, EOWPVT) were not different between groups likely due to 

matching and inclusion criteria. Hierarchical linear regression analyses revealed that the left 

intrahemispheric connection (left WA and left IFG) was a significant positive predictor of 

naming vocabulary (EOWPVT scores), accounting for 12% of the variance, F(1,35)=4.97, 

p=0.03 (Table 3; Figure 3A). When the two interhemispheric connections (left and right 

IFG, left and right WA) were added (step 2), the model approached significance, 

F(3,33)=2.53, p=0.07, and accounted for an additional 6% of the variance. All models 

presented passed tests for multicollinearity.

The left intrahemispheric connection (left WA and left IFG) was also a significant positive 

predictor of overall language ability (CELF-IV-CL) and accounted for 12% of the variance, 

F(1,34)=4.83, p=0.04 (Table 3; Figure 3B). However, the model was not significant when 

the two interhemispheric connections (left and right IFG, left and right WA) were added 

(step 2) suggesting that left intrahemispheric connection alone was a strong predictor.

Effect of Epilepsy Characteristics on FC of Language Regions

We also examined the relationship between language FC and 1) age of onset, 2) seizure 

duration, 3) seizure frequency, and 4) number of AEDs. Neither age of onset nor seizure 

duration was correlated with FC of the language regions. One connection, right MFG to 

right WA, demonstrated a negative correlation with age of onset (r=-0.47, p=0.05), but this 

did not survive Bonferroni correction. Using mixed model ANOVA, we also did not find 

language FC differences based on seizure frequency (more vs. less frequent) or numbers of 

AEDs (0-1 AED vs. >1 AEDs).

Effect of Language Dominance on FC of Language Regions

The majority of study participants had typical language dominance (left WA, left IFG), as 

expected, but four (21%) patients with epilepsy demonstrated atypical language dominance, 

including right-lateralized (right WA, right IFG) and crossed patterns (left IFG, right WA or 

right IFG, left WA) (see Table 2). For the left language dominant participants, TD controls 

demonstrated stronger connectivity than patients (F(1,32)=5.17, p=0.03, Cohen's d=0.46), 

similar to the results from the overall analysis (with atypical and typical language patterns 

included).

Discussion

In the present study, children with left focal epilepsy, and predominantly normal MRIs, 

demonstrated reduced FC of language areas compared to TD controls. The pediatric epilepsy 

group showed a decrease specifically in the homologues of IFG and WA and the right 

intrahemispheric IFG-MFG connection. Gross pathology, movement, and IQ did not differ 

between groups, removing these characteristics as potential contributing factors. The FC of 

language areas was related to language ability, such that increased connectivity between left 

language areas (IFG and WA) correlated with better performance on language measures. 

Contrary to our hypothesis, FC did not differ according to the epilepsy characteristics we 

examined.
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We found reduced interhemispheric frontal and temporal connectivity (left and right WA; 

left and right IFG) in children with epilepsy. Reduced synchrony between frontal language 

regions (left and right IFG) has also been identified in studies of adults with epilepsy.2 In 

contrast to adult epilepsy studies,3,4 however, we did not find differences in left 

intrahemispheric FC. Different stages of language development for children compared to 

adults may account for these discrepant findings. Evidence suggests that maturation of 

language connectivity is protracted, and there is a shift from strong interhemispheric 

connectivity during infancy/childhood to strong intrahemispheric connectivity in 

adulthood.27,28 Two-day-old infants show strong FC between hemispheres during an 

auditory language task.29 Typically developing children (ages 5-7) demonstrate strong 

functional interhemispheric connectivity, particularly in the superior temporal regions, while 

adults display strong intrahemispheric connectivity (between left frontal and temporal 

language areas) during a language task.28 Overall, the evidence suggests that 

intrahemispheric, fronto-temporal functional connections are strengthened later in life,28–30 

when language skills are more advanced.31 The protracted development of FC parallels 

structural studies using diffusion tensor imaging where fronto-temporal connections mature 

slower than other language region connections.29,32–34

Similar to these findings, in the current study of children (ages 6-12) the interhemispheric, 

homologous language connections were strong in both the TD control and epilepsy groups, 

despite reduced FC in these connections for children with epilepsy compared to controls. 

The strongest connectivity was between left and right WA, particularly for the control 

group. The previously mentioned body of research, in combination with our findings, 

identifies interhemispheric connectivity as an important stage in the typical development of 

language. We postulate that greater interhemispheric FC in children may be an index of 

available plasticity for the establishment of language dominance, and this plasticity 

diminishes through childhood.29,32–34 In atypical development, such as preterm children, 

reduced interhemispheric structural connectivity of the temporal lobe predicts language 

impairment.35 Thus, our hypothesis is that reduced interhemispheric connectivity at an early 

age may represent reduced capacity for the brain to compensate for neural disruption to the 

language networks. Epilepsy—or any source of atypical development, such as factors related 

to preterm birth—may disrupt or alter the FC developmental process for some children, 

which then may be a predictor of outcome.

We expand previous work by finding that children who had stronger left intrahemispheric 

language FC had better language ability. Increased left WA and left IFG FC was a positive 

predictor of naming vocabulary in particular. Adult studies have also shown that stronger 

cognitive ability is related to increased intrahemispheric FC, such that adults with left focus 

epilepsy exhibited a positive correlation between verbal IQ and left intrahemispheric FC.2 

These results suggest that the shift from inter- to intrahemispheric connections across 

development may facilitate, or be a marker of, increased cognitive efficiency and language 

ability. Epilepsy may disrupt and/or delay the ongoing functional specialization of network 

connections that underlie the development of cognitive skills, such as language. As noted 

above, adult epilepsy studies found a group difference (controls > patients) in left 

intrahemispheric connectivity2–4 and we did not for our pediatric sample. A possible 
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explanation for these discrepant findings may relate to cognitive ability, since our pediatric 

groups (TD controls and epilepsy) had comparable language skills.

Overall differences in connectivity in children with epilepsy did not depend on duration of 

epilepsy or age of onset. Previous FC and electrocorticographical studies of both childhood 

and adult onset epilepsy suggest that a prolonged duration of epilepsy is related to decreased 

network synchrony in adulthood.12,13 However, our findings are supported by other studies 

that show that seizure activity does not necessarily account for differences in cognitive 

ability; for example, lower cognitive skills are evident at onset of epilepsy.36 Our study 

differs from prior results in several important ways. First, we studied children, whereas 

others studied adults. Second, our patient population had a shorter duration and range of 

epilepsy (0.3-10.4 years) than the adult series (0–50 years),12 which may suggest a 

timeframe for when ongoing epilepsy interferes with FC. This has important implications for 

timing of interventions because our findings and others8 suggest that decreased FC is 

associated with lower cognitive skills.

A higher incidence of atypical language patterns is known to occur in patients with epilepsy, 

up to 30% compared to 5% in TD populations.10 The majority of adult studies of language 

FC in epilepsy include patients with epilepsy that have typical and atypical language 

representation. Based on one adult study of controls and patients with left language 

dominance,11 we hypothesized that differences in FC between controls and patients would 

relate to these known differences in language dominance. Our findings did not support the 

hypothesis that language dominance influences changes in FC between language areas 

overall. However, definitive conclusions regarding the relationship of language dominance 

and connectivity are limited because the sample size of patients with atypical language 

representation was small (n=4).

Limitations

In this study we used large ROIs, which has the advantage of capturing variability in patient 

language localization,10,37 but the disadvantage of averaging time courses across large 

numbers of voxels. Another disadvantage may be that large ROIs averages variability from 

within smaller functional ROIs (e.g., BA 44, 45, 47) and may have limited our ability to 

identify relationships between performance and more localized patterns of synchrony. 

Whole-brain, voxel-wise analyses may allow for further characterization of FC and the 

relationship between network synchrony and cognitive performance. The use of whole-

brain, rather than ROI, analyses may provide additional insights by examining the effect, or 

association, of epilepsy on other cognitive networks and their interplay with language 

systems.38 The differences between our pediatric study and the adult studies may be related 

to methodological differences, such as larger and/or different ROIs for our FC analysis. It is 

also possible that these differences were due to differences in the experimental tasks: for 

example tasks that produce frontal versus those that yield temporal and frontal language area 

activation. Future investigations should also look at intrinsic connectivity via resting-state 

study designs.39

The laterality and location of the seizure focus was based on available clinical and 

elctrophysiological data. The assurance of clinical features and interictal and ictal EEG in 
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lateralizing and, more importantly, localizing the seizure focus are well known and are a 

limitation to this study. We recognize the migratory nature of epileptiform discharges in 

some patients who have normal MRI; thus a limitation of this study is the cross sectional 

design which prevents serial EEG to provide additional confirmation of the focus. While we 

addressed several possible influences on FC including IQ, task performance, MRI 

abnormalities, age of onset, duration, seizure frequency, and number of AEDs there remain 

limitations to these analyses and other factors could be examined, such as type of AED. 

Assessing the impact of such are challenging particularly within modest sample sizes given 

the heterogeneity of response, even when children are taking the same dose of the same 

AED. Further, one would expect that potential medication effects would be global rather 

than affecting subsets of the distributed language network, as found in the current study. 

Similarly, the majority of epilepsy patients in our sample had normal structural MRIs; 

however, microscopic anatomical abnormalities cannot be excluded. Furthermore, our 

sample reflects general epilepsy populations where 30-50% have comorbid learning 

problems40 and these patients were not excluded; however, by matching on IQ when 

possible, our patients did not differ on the neuropsychological measures we used in this 

study. Future studies with larger samples are needed to examine the relationship between 

these comorbidities and language processing, as well as other cognitive systems. Future 

studies with larger samples will also be able to examine fully the effect of atypical language 

dominance on connectivity. As atypical language dominance is a minority pattern, large 

samples are required to accumulate a large enough sample for statistical analysis. Language 

dominance might be expected to affect intrahemispheric connections but not connections 

between homologous regions.

Conclusions

The results of the current study contribute to our understanding of the functional 

connectivity of language regions during development through two important findings. First, 

interhemispheric FC is decreased in children with left lateralized focal epilepsy compared to 

controls, particularly in the primary frontal and temporal language connections, and these 

differences are present near the onset of epilepsy. Second, our findings extend the theory 

that connectivity has a developmental pattern and is related to cognitive ability. Greater 

intrahemispheric FC between left language centers is related to better language ability in 

general, and naming vocabulary in particular.

We confirm that we have read Epilepsia's position on issues involved in ethical publication 

and affirm that this report is consistent with those guidelines.
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Figure 1. FC between paired language regions for each group (Patients vs. TD Controls)
a) Graph of the FC values for each paired language region for each group. b) Visual 

depiction of the ROIS and the significantly different connections between Patients and TD 

Controls. The brain networks were visualized with BrainNet Viewer (http://nitrc.org/

projects/bnv/).41 * indicates language connections with a significant difference between 

groups.
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Figure 2. Color-coded matrices representing FC for the 9 main language connections
Matrices for TD Controls are displayed on the left panel and Patients with epilepsy on the 

right. The colors range from dark red (z=0.0-0.30) to yellow (z=0.90-1.10). * indicates 

language connections with a significant difference between groups. Connections that were 

not examined in the current study are identified by a gray color in the matrices.
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Figure 3. Correlations between FC and neuropsychological variables
Correlation between FC for IFG L ↔ WA L and naming vocabulary (EOWPVT) and 

overall language ability (CELF-IV-CL).
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Table 1
Seizure Characteristics, Neuropsychological Assessment, and FMRI Task Performance

Mean and standard deviations of FMRI Task Performance, WASI, CELF-IV-CL, and EOWPVT scores for 

Patients and TD Controls.

Group

Seizure Characteristics Patients

 Localization (left focus) 6 temporal, 4 frontal, 1 fronto-temporal, 1 parietal, 2 temporal-parietal, 1 occipital

 Seizure Duration (mean) 3.4 years (±3.2; range=0.3-10.4 years)

 Age of Onset 6.9 years (±2.6; range=1.0-11.0 years)

 Seizure Frequency* Daily: n=5, weekly: n=2, monthly: n=5, none in past 6 months: n=2, none in past year: n=4

 AEDs* Carbamazepine: n=3, clonazepam: n=1, diazepam: n=2, lacosamide: n=1, lamotrigine: n=3, levetiracitam: n=3; 
lorazepam: n=1, oxcarbazepine: n=9, phenobarbital: n=1, phenytoin: n=1, topiramate: n=1, valproate: n=3, 

zonisimide: n=2

Measure
Patients Controls

Intellectual Assessment

 FSIQ 106 (±19) (n=18) 110 (±11)

 VIQ 107 (±19) (n=18) 111 (±14)

 PIQ 103 (±16) (n=18) 106 (±11)

Language Measures

 CELF-IV-CL 103 (±14) (n=17) 108 (±11)

 EOWPVT 107 (±16) (n=18) 112 (±16)

fMRI Task Performance

 Overall Accuracy 71% (±25%) (n=17) 80% (±16) (n=18)

*
Seizure frequency and AED information was not available for 1 patient.
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Table 2
Language Dominance Patterns and Overall FC by Language Pattern

Patterns of language dominance: typical (left) and atypical (right, bilateral, crossed) for Patients and TD 

Controls.

Rates

Language Dominance Patients (n=19) Controls (n=19)

Typical

 Left 15 19

Atypical

 Right 2 0

 Crossed 2 0

 Bilateral 0 0

 TOTAL 4 0
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